Technical Details of the Enigma Machine
Home Menu History Procedures Technical details Enigma Simulator

This page provides the technical details of the Wehrmacht and Luftwaffe Enigma, and the Kriegsmarine Enigma M4. You can view all images in a higher resolution by clicking them.

Wehrmacht Enigma I
D. Rijmenants

Enigma M4
D. Rijmenants

Wiring Diagram

The Enigma machine is an electro-mechanical device. It consists of a keyboard (German QWERTZ layout), a lamp panel, representing the alphabet, and three or four rotors. One or more rotors move on each key stroke. The rotors and plugboard translate the depressed key into a glowing light bulb, representing the encrypted letter. The machine has a compartment for a 4 volt battery. Some versions have a switch to select between internal battery and external power supply. Other versions have a transformer to connect the machine to the AC mains.

The Enigma I with open lid. From left to right the B reflector, the three rotors, the fixed entry wheel (black) and the battery compartment. Directly below the battery compartment the power switch contacts. The second row of bulbs has a spare bulb on the left and the hole on the right is for testing bulbs. Photo D. Rijmenants

In the above example the current flows from the battery [1] through the depressed bi-directional A key [2] to the plugboard or "Steckerbrett" [3]. The current proceeds through the unused and therefore closed A socket [3] via the fixed entry wheel or "Eintrittwalze" [4] through the scrambled wirings of the three rotors or "Walzen" [5] to arrive at the reflector or "Umkehrwalze" [6]. The reflector returns the signal via a different path back through the rotors [5] and entry wheel [4] to continue to the plugboard's opened S socket [7]. The cable with two plugs or "Stecker" [8] send the signal to the D socket that passes the signal to letter switch D [9] to light-up light bulb D.

The plugboard sends and receives the signals to and from the fixed entry wheel, either directly or swapped with another letter by a cord with plugs. When no plug inserted, the two sides of that socket are connected to each other by its bridge (red bar). When a plug is inserted, the bridge is lifted, disconnects the two sides of the socket, and the signal is redirected through the plug cord. It's impossible to insert the plugs the wrong way because each plug has a thick and thin pin.

Note that depressing a key will first step the rotors and then the sent the current through the rotors and the light bulb. If the key is released the light bulb will no longer light up. Therefore, when no key is depressed, the rotor position you see in the little windows is the position of the previous encrypted letter!

Below the mechanical and electrical setup of the Enigma, viewed from the right. In this example the wiring with three letter key switches, three light bulbs and one plug cord. On the right the connections to the fixed entry wheel, the battery box (grey surface) and the power selector. In reality, the wires are grouped in bundles of 26 wires to plugboard, entry wheel and lamp panel.

The Rotors

The rotors (Walzen in German) are the most important elements of the machine. These round disks [9], approximately 4 inch in diameter, are made from metal or Bakelite and have a core with 26 spring-loaded contacts [6] on the right side, scramble wired [5] to 26 flat contacts [4] on the left side, with a hollow axle in the center [8].

On the outside of the wiring core there's a movable ring [3] with 26 numbers or letters and a notch [1]. This ring is rotatable and is locked with a spring-loaded pin (Wehrmacht) [7] or two spring-loaded arcs (Kriegmarine) into any of the 26 positions.

Changing the position of the ring will change the position of the notch and alphabet, relative to the internal wiring. This setting is called the ring setting or Ringstellung and its position is visible by a dot marking [2]. Each rotor has on its left a notch [1] and on its right a ratchet [10]. These are used by the stepping mechanism to advance the rotors.

The internal wiring is different for each rotor. This wiring represents a substitution encryption. The combination of several rotors, in ever-changing positions relative to each other, is what makes the encryption so complex.

The machine was introduced with three rotors. In 1939 the set was extended to five rotors, marked with Roman numerals I, II, III, IV and V, all with a single notch. The Kriegmarine extended this set of rotors with another three rotors called VI, VII and VIII, each with two notches.

In 1942, the Kriegsmarine M4 introduced a fourth rotor. To achieve this, the wide B and C reflectors from the three rotor version were replaced by thin B and C reflectors, leaving room for the special fourth rotor. The fourth rotors were of two configurations, named Beta and Gamma, with spring-loaded contacts on both sides, making them incompatible with the other eight rotors.

Enigma rotor exploded view.
Eric Pierce for Wikipedia

The three rotors on their shaft
D. Rijmenants

Left view of rotor with notch (left)
D. Rijmenants

Right view of rotor with ratchet
D. Rijmenants

Kriegsmarine rotor with two notches
(click to enlarge)
D. Rijmenants

ring locking with pin
D. Rijmenants

ring locking with arcs
D. Rijmenants

The reflector

The reflector, Umkehrwalze or UKW in German, is a unique feature of the Enigma machine. On the internal wiring of all movable rotors, each letter can be wired with any other letter. An 'A' could be wired to 'F', where the 'F' is wired to 'K'. In the reflector, the connections are made in pairs. If the 'A' is wired to the 'F', this means the 'F' is also wired to the 'A', resulting in a reciprocal encryption.

The advantage for the operator is clear. Encryption and decryption is possible with the same machine setting and wiring. Unfortunately, a letter can never be encrypted into itself, and this feature opened the door to cryptanalysis, making the job easier to the codebreakers.

During the Second World War two types of reflector, B and C, were used. Both had 26 spring-loaded contacts on the right side. The four-rotor Kriegsmarine Enigmas used special thin reflectors, also called B and C, but with wiring that was different from the wiring of the three-rotor Wehrmacht and Luftwaffe reflectors.

However, if the thin Kriegsmarine reflector B was used together with the fourth Beta rotor in A-position and A-ring setting or the C reflector with Gamma rotor, these reflectors were compatible with the three-rotor versions, enabling communication between different machine types. The thin reflectors had flats contacts and were used in combination with the special fourth Beta or Gamma rotors with spring-loaded contacts on both sides. In the final days of the war, a special type D reflector was introduced. It was an adjustable reflector with 12 wires and 24 plugs. The 13th wire was a fixed connection.

Rotor Wiring Tables

The internal wiring and rotation of the rotors performs the actual encryption. In all tables below, the "entry" side is the right side of each rotor, as seen in the machine. We can see that on a rotor type I the 'A' is encrypted into 'E', a 'B' into “K”, and 'C' into 'M'.

The letters A through Z represent the pin positions on each side of the rotor. These letters are absolutely not related to the signal path of letters through the machine or the letters on the keys or plugboard. The ‘A’ signal, coming from the plugboard, can just as well enter at the ‘X’ pin of a rotor, depending on that rotor’s current rotary position and ring setting.

Default rotors, used by the Wehrmacht and Kriegsmarine


The B reflector of the Wehrmacht Enigma
D. Rijmenants

Naval Beta rotor and thin reflector
D. Rijmenants

Additional rotors used by Kriegsmarine M3 and M4 only:


The special fourth rotors, also called Zusatzwalzen or Greek rotors. Used on the Kriegsmarine M4 with thin reflectors only:


The reflector (Umkehrwalze or UKW in German) is a unique feature of the Enigma machine. On the normal rotors, each letter can be wired with any other letter. An 'A' could be wired to 'F', while the 'F' is wired to 'K'. In the reflector, the connections are made in loop pairs. In the case of the wide B reflector, the 'A' is wired to the 'Y' which means that the 'Y' is also wired to the 'A', resulting in a reciprocal encryption. The advantage of this design is that encryption and decryption are possible with the same machine setting and wiring. Unfortunately, a letter can never be encrypted into itself, a property that opened the door to cryptanalysis, making the job easier to the codebreakers.

Default wide reflectors Wehrmacht and Luftwaffe:


Thin reflectors, Kriegsmarine M4 only:


The wirings as described here, are for the rotors for Wehrmacht (Heer and Luftwaffe) and Kriegsmarine Enigma's only. The rotors for other versions of the Enigma machine had other internal wirings.

The Rotor Encryption Process

A rotor consists of two main parts. First, we have the movable outer ring with the alphabet (visible in the little window) and the notch (responsible for the stepping). Secondly, there's the core with the internal wiring (the actual encryption) and its 2 x 26 contacts. This core is fixed to the large thumb-wheel, which is used to manually set the rotor position. Changing the position of the outer ring is called the ring setting or 'Ringstellung' and will change the position of the alphabet ring and its notch (turnover-point), relative to the internal wiring core.

The flow of the signal begins from right to left. The signal coming from the plugboard arrives at the fixed entry wheel, located on the right side of the rotor cradle, and proceeds, from right to left, through the right-most, middle and left-most rotor. Once the signal has passed all three (or four rotors with the M4), the fixed reflector on the far left returns this signal back through the left, middle and right rotor via another path, causing a second completely different scramble of the signal. It is obvious that the combination of rotor wiring, rotor position and ring offset created a complex encoding. A single step of one rotor will produce a completely different path through all three rotors.

Remember that, when depressing a key, the rotors advance before the electrical signal runs through the rotors. Therefore, to examine the current flow through the rightmost rotor in A position, the rotor must be set in the Z position before depressing the key (this also counts for the other rotors if they are due to step). In the following examples, no plugs are set on the plugboard and the signal runs directly from the A key, through the entry wheel, to rotor I.

In the examples below we use the Enigma rotor type I (Roman one). The movable ring is the vertical gray field. The wiring core, and the thumbwheel that is fixed to it, are white (in reality, the white field does not carry letters). The rotor position is indicated by the letter in the black frame (the little window in the machine cover). The little black field to the right of the ring is the locking pin, to lock the ring's position, and indicates the ring setting.

The letters at the right, outside the rotor, are the pins of the fixed entry wheel. The letters at the left, outside the rotor, are also alighned with the fixed entry rotor letters. That A pin is only aligned with the next left rotor's right-side A pin if that next left rotor is in the same position with the same ring setting.

The first example shows rotor I with ring setting A-01 (pin or dot at A) and two consecutive keystrokes of the letter A. Note that the rotor was in the Z position before the first keystroke and the rotor now has moved to the A position.

On the left you see rotor I in A position (A visible in the little window). The signal from the A key, arrives at the fixed entry wheel A position, enters the rotor at the A contact and exits at the E contact on the E position.

On the right, the rotor has stepped to the B position. The signal again arrives at the A position, but now enters the rotor at the B contact and exits at the K contact. Since the complete rotor has stepped one position, the K contact is now in the J position and the signal therefore exits at the J position towards the next rotor.

The 'Ringstellung' on the rotors is marked by a locking pin (Wehrmacht) or by a dot on the wiring core (Kriegsmarine). This marking shows the location of the first contact (A or 01) on the rotor core. Ring setting F or 06 thus will align the letter F or figure 06 on the outer ring with the first contact of the rotor, marked by the pin or dot.

When changing the ring setting one position, the encryption is shifted one position. The rotor turnover point remains at the same letter, because the notch is located at the alphabet ring. The ring setting should not be confused with the rotor position, which is the letter on the alphabet ring, visible in the little window of the machine cover.

The next examples show the effect of different ring settings.

On the left, rotor I has a ring setting B-02 (pin or dot at B), the key is depressed and the rotor is in the A position (A visible in little window). The signal from the A key arrives at the fixed entry wheel A position. From the outside, the signal appears to enter the rotor at its A position, but in reality, it enters at the rotor's Z contact and exits at the J contact.

Due to the ring setting, the wiring core is shifted one position and so do the exit contacts. Therefore, exit contact J is now in the K position and the signal exits at the K position towards the next rotor. This might be confusing, but that was the intention of the ring setting.

On the right, we have the same rotor I with ring setting F-06 and the rotor in the Y position. The signal arrives at the entry wheel A position, enters the rotor at the T contact and exits at the P contact.

However, the combination of the rotor position and its ring settings causes a shift of seven positions of the exit contacts. Therefore, exit contact P is now in the U position and the signal exits at the W position towards the next rotor.

Note that the signal exits the rotor pack at the left. The reflector then returns the signal back through the rotors via another path to the right, again by a complex route, depending on rotor position and ring setting.

There's an excellent on-line Java Enigma simulation from Daniel Palloks to experiment with ring positions.The simulator clearly shows how the signal travels through the rotors. Click the "Show monitor". In the monitor, PLG is the plugboard, ETW the entry rotor, -W- are the three rotors, and UKW is the reflector. Green and red arrows are back and forth.

The stepping mechanism

Each time a key is depressed, the position of the rotors is changed. This results in a different substitution encryption each time for the same given letter. The first rotor, on the right side, steps on each depressed key. The middle rotor advances once on every 26 advances of the first rotor. The third, slowest, rotor, on every 26 advances of the middle rotor.

Depressing a key will move the stepping bar [1] downwards and the pawl axle [2] and its three spring-loaded pawls [3] upwards. If the pawl axle [2] is raised the pawls move towards the rotors. Each pawl is placed both over the notch ring of the rotor to its right, and the teeth of the rotor to its left. If a rotor is in its notch position, its pawl can move into that notch and push into the teeth of the next left rotor, moving that rotor one step further.

If the rotor on its right is not in the notch position the pawl slides over the notch ring of the right side rotor and will be unable to grab into the teeth. Since there is no rotor on the right side of the first rotor, the right most pawl will engage the first rotor on every depressing of a key. If no key is pressed, the pawl axle [2] forces the pawls [3] against pads on the bottom of the machine, pushing the pawls away from the rotors. This enables the operator to move the rotors freely by hand in both directions.

The position of the notch is different for each of the rotors. In the table below we can see that rotor I has a notch on letter Y. If this notch is positioned in front of the pawl, the letter Q is visible in the little window. Therefore, the rotor to the left of rotor I will step if rotor I steps from Q to R (cryptanalysts used the mnemonic Royal Flags Wave Kings Above to remember the positions of the rotors after turnover). Notice that the Kriegsmarine rotors VI, VII and VIII have two notches. This advances the rotor to their left twice as fast as the other rotors.

Rotor Notch Window next left rotor steps when rotor steps from/to
H + U
Z and M
Q -> R
E -> F
V -> W
J -> K
Z -> A
Z -> A and M -> N

The three pawls on their axle, resting on the pads. The pawl axle is fixed to the stepping bar (silver L shape). At the right of the pawls you can see the fixed entry rotor.
D. Rijmenants

Gear type advance mechanism of the rare predecessor of the Enigma G. Notice the normal rotor contact placement instead of the later Enigma G rotors with special zigzag placed contacts. D. Rijmenants

Important note on the Stepping Sequence

The rotors appear to work as a normal odometer, with the right-most rotor always stepping on each key stroke and the other rotors stepping after a complete cycle of the previous rotor, but there is an important difference due to the system of pawls and teeth. The middle rotor will advance on the next step of the first rotor a second time in a row, if the middle rotor is in its own turnover position. This is called the double-step. Below and example of such a sequence when the rotors III – II - I are used:


As you can observe, stepping from Q to R advances the middle rotor, and on the next step that middle rotor steps again, advancing the third rotor also. This is caused by the mechanical design of pawls and ratchets. There are three pawls that are all three activated on every key stroke. Each pawl is half positioned on the index ring (carrying a notch) of the rotor on its right, and half positioned above the 26 teeth of the rotor on its left (viewed from the point of the operator). A rotor’s ring prevents the pawl from pushing into the teeth of the next-left rotor. When a notch occurs in a ring, the pawl can drop into that notch and push into the teeth of the next-left rotor. Since the right-most pawl is not above an index ring it will continuously advance the right-most rotor.

Once the right-most rotor has stepped and the middle (spring-loaded) pawl can drop down in the right rotor's notch, it will engage the middle rotor's teeth, pushing the middle rotor one step. An identical event will take place when the middle rotor's notch enables the third pawl to drive the teeth of the left-most rotor. A rotor will not only advance if its teeth are catched, but also when a pawl pushes into its notch.

This situation creates a double-step of the middle rotor: the right rotor steps and the middle pawl takes the middle rotor one step further. If the middle rotor has moved by this step into its own notch position, then, on the next step, the left-most pawl catches the teeth of the left-most rotor, but the same pawl also pushes in the middle rotor's notch, moving it a second time in a row. Note that a double notched rotor in the middle position will also have two double steps.

The stepping mechanism, as explained above, is used on the Wehrmacht and Kriegsmarine Enigma. The four-rotor Kriegsmarine M4 is derived from the three rotor version without changing the rotor advance mechanism or adding a fourth pawl. Therefore the fourth rotor doesn't move and can only be adjusted manually. The Enigma-G, used by the Abwehr (German Intelligence) has a different mechanism. The Enigma-G has a rotating reflector and three rotors with multiple notches, rotated by a gear box.

The Plugboard

In 1930, the plugboard or Steckerbrett was introduced on the first Wehrmacht Enigma version. The plugboard is situated on the front of the machine. Without an inserted plug, the current flows from the switches, controlled by the keyboard, directly to the entry rotor. Inserting a cable results in swapping the two involved letters before proceeding to the entry rotor. Each machine was by default equipped with a set of 10 cables. The plugboard was an important improvement of the machines encryption strength.

Each letter has two jacks. Inserting a plug disconnects the upper jack, connected to the keyboard, and the lower jack, connected to the entry wheel. The other end of the cross-wired cable is inserted into another letter's jack, swapping the connections of the two letters. The current passes through the plugboard once on its way to the rotors and another time on its way to the light bulbs.

The plugboard of a Wehrmacht Enigma
D. Rijmenants


A handy feature, used on the Kriegsmarine Enigma was the Schreibmax. This little printer could print the alphabet on a small paper ribbon. This excluded the need for a second operator, reading the lamps and writing the letters down. The Schreibmax was placed on top of the Enigma machine and was connected to the lamp panel; to install the printer, the lamp cover and all light bulbs had to be removed.

Another accessory was the remote lamp panel. If the machine was equipped with an extra panel, the wooden case of the Enigma was wider and could store the extra panel. There was a lamp panel version that could be connected afterwards, but that required, just as with the Schreibmax, the lamp panel and light bulbs to be removed. The remote panel made it possible for a person to read the decrypted text, without giving the operator access to it.

In 1944, the Luftwaffe introduced an extra plugboard switch, called the Uhr (clock). The Uhr was a little box, containing a switch with 40 positions. It replaced the default plug cables. After connecting the plugs, as determined in the daily key sheet, the operator could turn the switch to one of the 40 positions, each position resulting in a different combination of plug wiring. Most of these cable connections are, unlike the default cables, not pair-wise.

The Uhr with its cables that replace the normal wiring cables
D. Rijmenants

Mathematical Security

To calculate the mathematical security we have to find all possible different settings of the machine. Therefore, we need to look at the following properties of the machine: the selection and order of the rotors, their wiring, the ring setting on each of the rotors, the start position of these rotors at the beginning of the message, the reflector and the plugboard settings. Now, there are different ways to calculate a grand total of this. In this NSA publication, all possible variations of wiring in each of the rotors and the reflector was included. This results in an astronomical 3 x 10114. However, these misleading figures represent all theoretically possible variations of the machine.

Unfortunately for the Germans, the Allied codebreakers knew the machine, the rotors and the internal wiring of these rotors. Therefore, they only had to take in account the actual possible ways you could set the machine, the actual key settings or key space. This is what we call the practical security, which is far less than the theoretical security in the case of Enigma. For the German cryptologists, a single rotor could be wired in 4 x 1026 different ways. Combining three rotors and a reflector quickly gives you astronomical figures.

For the Allied codebreakers, who knew the wring of the rotors, there were only 26 different variations for a single rotor, that is, the 26 positions it could have in the machine. They didn't have to search through the immense number of possible wirings. The German cryptologists made a critical mistake by ignoring Auguste Kerckhoff's law that the security of a device may never depend on the secrecy of the system (i.e. rotor wiring, design), which will be compromised sooner or later anyhow, but only on the secrecy of the key (i.e. rotor selection and plugboard). In the interesting R.A. Ratcliff paper for Cryptologia you can read how dangerous it is to rely on theoretical security.

Let us look at all the things we can actually set in the machine and are unknown to the codebreaker. In our example, we take the three-rotor Wehrmacht Enigma with default B reflector and selection out of 5 rotors. We use 10 plug cables on the plugboard, the default number of cables, issued with the machine (don't ask me why they didn't provide 11 cables, which gave far more possible combinations)

To select 3 rotors out of a possible 5, there are 60 combinations (5 x 4 x 3). Each rotor, in other words its internal wiring, can be set in any of 26 positions. Therefore, with 3 rotors there are 17,576 different rotor positions (26 x 26 x 26). The ring on each rotor holds the rotor labelling (which doesn't matter here) and a notch that affects the stepping of the next-left rotor. Each ring can be set in any of 26 positions. As there is no rotor to the left of the third (most-left) rotor, only the rings of the most-right and middle rotor affect the calculation. This gives 676 ring combinations (26 x 26).

The plugboard provides the largest chunk of possible different settings. For the first cable, one side can have any of the 26 positions and its other side any of the 25 remaining positions. However, since a combination and its reverse are identical (A-B is the same as B-A) we have to ignore all doubles in all possible combinations for one cable, giving (26 x 25) / (1! x 21) or 325 unique ways to set one cable. For two cables, we have (26 x 25) for the first cable and, since two sockets are already used, (24 x 23) for the second cable. We now have to take in account the doubles for two cables, giving (26 x 25 x 24 x 23) / (2! x 22) = 44,850 unique ways to set two cables. For three cables we have (26 x 25 x 24 x 23 x 22 x 21) / (3! x 23) = 3,453,450 combinations, and so on. Thus, with the default 10 cables we have 150,738,274,937,250 different combinations. The formula, with n as the number of cables, is 26! / (26 - 2n)! n! 2n

In total, this gives: 60 x 17,576 x 676 x 150,738,274,937,250 = 107,458,687,327,250,619,360,000 or 1.07 x 1023

So, in real life, the Wehrmacht Enigma machine could be set in 1.07 x 1023 different ways, which is comparable with a 77 bit key.

There are some comments we should add to this number. In reality, the maximum period of the rotors - the number of steps before the machine repeats itself - is slightly less than 17,576. This is caused by the double-step feature of the stepping mechanism. The actual period depends on the type of rotor. The three double-notched Naval rotors will have an even smaller period than the Wehrmacht rotors as they produce more double steps of the middle rotor. The maximum period however is no part of the variables that can be set and therefore do not influence the key space.

The Wehrmacht machine could be equipped with either the B or C reflector. In general, radio nets always used the same reflector, as the use of different reflectors created logistical, procedural and practical problems. If nonetheless taken in account, the choice between B and C reflector would only double the key space.

The adding of a fourth rotor for the Naval Enigma M4 to improve its security was a nice but useless addition. The non-moving fourth rotor complicated the machine only by a factor 26 and, together with the thin reflector, could be considered as a settable reflector with 26 positions, of which the Allies quickly found the wiring (after 10 months of panic). The introduction of 8 naval rotors on the Kriegsmarine M3 and later on the four-rotor M4 was a far better approach. They increased the rotor combinations from 60 to 336, and brought in additional complexity with 3 multiple notched naval rotors VI VII and VIII.

Let us now calculate the practical key size of the four-rotor Kriegsmarine Enigma M4. This machine uses 3 normal rotors, selected from a set of 8 (of which three with double notches). This gives 336 rotor combinations (8 x 7 x 6). The M4 also has a special fourth rotor called Beta or Gamma (without a ring), which gives us 2 choices. These are not compatible with the other rotors and are only suitable as fourth (most left) rotor. The 4 rotors can be set in any of 456,976 positions (26 x 26 x 26 x 26). The M4 had a smaller B or C reflector, to enable the placement of the fourth rotor. We don't include the choice of reflector as it was generally never changed. Again, only two rings were involved, as the third rotor didn't step the never moving fourth rotor. The M4 was also issued with 10 plug cables.

In total, this gives: 336 x 2 x 456,976 x 676 x 150,738,274,937,250 = 31,291,969,749,695,380,357,632,000 or 3.1 x 1025, comparable with a 84 bit key.

This is about 291 times stronger than the Wehrmacht machine. This is due to the increased choice of rotors (already available on the M3 before the war) and the possible initial positions for 4 rotors instead of 3. However, although the fourth rotor did increase the key size, it failed to add to the complexity of the encryption itself, since it couldn't move during the enciphering process.

A better solution would have been to completely re-wire some of the rotors on a regular basis. A single variable rotor wiring would multiply the key space with no less than 4 x 1026, which is far more than a settable reflector with its 7.8 x 1012 possible variations. A single practical, daily changed, rewireable rotor, which has 4 x 1026 possible settings, would have been much more effective than the overestimated daily not-moving plugboard setting with only 2 x 1014 variations (the plugboard was always in pairs). The use of such rotor, for instance in conjunction with a thin M4-like reflector and two out of four normal rotors, would be a true disaster for the codebreakers.

However, introducing rewireable rotors during wartime would be cumbersome and present a logistical and financial nightmare, just as the rewireable D reflector proved to be. Too little too late. The D reflector did scare the codebreakers initially, until they realized that the D reflector was used simultaneously with the default reflectors in the same radio nets, due to practical considerations. This dual use made it possible to break it even by hand. More about the D reflector and other attempts on the Enigma history page.

Any crypto-expert would also discard the 17,576 ring combinations. Even with completely wrong ring settings, you will initially start with a correct plain text. As soon as you get garbled text, you adjust the ring of the most-right rotor (a 1/26 chance you're right) and if you're lucky you have no more trouble for the next 676 characters. If less lucky, you had to adjust the ring of the middle rotor after 26 letters. All done on-the-fly. Unfortunately for the Germans, the ingenious Turing Bombe design, with mirrored identical rotor packs, avoided the need to search through the immense number of plugboard settings, taking a factor 2 x 1014 shortcut on the linking of their cribs (known piece of plain and ciphertext) to a given rotor setting.

Breaking the Enigma traffic was nonetheless an enormous challenge with a key setting that was extraordinary in the electro-mechanical era of those days. An exhaustive search on 1.07 x 1023 settings was impossible in the 1940s and its comparable 77 bit key is even huge for today's computer standards. To give you an idea of the size of that number, with 1.07 x 1023 sheets of paper (0.0039 inch each) you can build roughly 70,000,000 stacks of paper, each of them reaching from the Earth to the Sun. Also, 1.07 x 1023 inches equals 288,500 light-year. A pretty big number!

The Germans were correct in assuming that the Enigma was theoretically unbreakable. However, codebreaking is more than keys sizes and numbers, theoretical security and searching for the right combination, and the allies proved them wrong. More on Enigma and the U-boat war.

More on Enigma on this Website

More on the Technical Details of the Enigma (off-site, opens in new tab)

  • Enigma 3D video created by Jared Owen Animation with inside view of the electrical and mechanical processes.

Web Analytics Made Easy -

Dirk Rijmenants 2004. Last changes: 24 August 2022

Home Menu History Procedures Technical details Enigma Simulator